BMath Algebra-IV End-semestral test-2019

Instructions : Total time-3 hours. **Solve any five** problems. You may use results done in the class, without proofs. If you wish to use any assignment/tutorial problem, you should include its solution in your answer.

- 1. Let L be a separable extension of a field k, of prime degree p. Let $\theta \in L$ be such that $L = k(\theta)$. Let $\theta_1, \dots, \theta_p$ be the conjugates of θ in an algebraic closure of k, with $\theta = \theta_1$. Assume that $\theta_2 \in L$. Prove that L/k is a cyclic extension. (10)
- 2. Let L/k be a Galois extension with $Gal(L/k) = \{\sigma_1, \dots, \sigma_n\}$. Let $\alpha \in L$ be such that $\sigma_1(\alpha), \dots, \sigma_n(\alpha)$ are all distinct. Prove that $L = k(\alpha)$. (10)
- 3. Let L/k be a finite Galois extension with G := Gal(L/k). Let G' be the commutator subgroup of G and let $K := L^{G'}$. Show that K/k is an abelian extension. Show that K contains any subfield $M \supset k$ of L such that M/k is an abelian extension. (5+5)
- 4. Let L/\mathbb{Q} be a Galois extension of odd degree contained in \mathbb{C} . Prove that $L \subset \mathbb{R}$. (10)
- 5. Construct a Galois extension of \mathbb{Q} with Galois group isomorphic to $\frac{\mathbb{Z}}{3\mathbb{Z}} \times \frac{\mathbb{Z}}{3\mathbb{Z}}$. (10)
- Find all subfields of degree 2 over Q of the field (i) Q(ζ₈) (ii) Q(ζ₅) (iii) Q(ζ₇).
 (6+2+2)
- 7. Let ζ be a primitive 7th root of unity in \mathbb{C} . Find an explicit field extension K/\mathbb{Q} such that $\mathbb{Q}(\zeta) \subset K$ and K admits a radical root tower over \mathbb{Q} with each step cyclic of prime degree. (10)